

TDW Pipeline Integrity Solutions

Expanding In-line Inspection Capabilities & Applications Senior Product Manager - Tod Barker September 11,2018

Contents

- 10 Inch EMAT
- In-line Inspection of Hydrogen Pipelines
- Advances in Data Analysis Integrating Multiple Technologies

10 Inch EMAT Development

SCC Discovered by Pipeline Operator

EMAT Development

Natural gas pipeline operator with known SCC partnered with TD Williamson in the development of a 10" EMAT tool

• First 10" EMAT inspection April 2016

10" EMAT Development

Development Challenges:

- Accommodating large sensors
- Dealing with a power hungry technology
- Sensor durability

Sensor Geometry Limitations

- The technology of EMAT requires large sensors compared to MFL technology.
- Sensor size does not scale with tool size.

Finding Sensor Real Estate

- Optimized magnet arrangements
- Protected magnet design

Sensor Robustness

- In depth materials evaluation
- > 25X Improvement in wear

Comparative Test

Pipe Simulation

Electronics Improvements

- ~50% reduction in power consumption
- Noise reduction
- Reduced system voltage (higher efficiency)

Stress Corrosion Cracking (SCC)

Results: Unity Plot

10 EMAT Highlights Summary

- Robust Sensors
- More power efficient
- Higher quality data
- Longer run capability

In-line Inspection of Hydrogen Pipelines

Growing Demand for Hydrogen

- U.S. hydrogen demand (2008 14)
 - Hydrogen supplied to refineries increased 135%

Image from https://www.eia.gov/todayinenergy/detail.php?id=24612

Hydrogen

- Smallest, lightest and most abundant element
- Predominately used for refining diesel and gasoline
 - Fertilizer, food processing and transportation
- Extremely flammable

Image from https://www.twilio.com/blog/2016/06/air-products-uses-twilio-sms-to-prevent-on-site-incidents.html

Need for In-line Inspection (ILI):

- Hydrogen is flammable
 - DOT 192 regulations (ASME B31.12)
 - ILI in Hydrogen was preferred option

Image from https://pgjonline.com/2016/10/20/inside-iraq-stringent-security-required-for-first-inline-inspection/

Hydrogen Pipeline operator and TDW Partnership

- TDW's R&D capabilities
- Technology selection
- Tool capability evaluation

T.D. Williamson, Inc.

Evaluations and Testing

- High strength steels
- Magnets
- Brushes
- Seals

Image from https://www.creativesafetysupply.com/glossary/pdca-cycle/

H2 Saturation Testing

Rare Earth Magnet in H2 Testing

Before

After

Wear Testing

Tool Design

Tool Testing

Success

- 61 miles inspection of H2
- 100% data collection

Hydrogen ILI Summary

- Partnership between hydrogen pipeline operator and TDW was key.
- Required new tool design
- In-line inspection of Hydrogen is possible

Advances in data analysis in consideration of integrating multiple technologies

Axial Planar Improvements

Axial Planar Improvements

Advances in Data Analysis Summary

• Enhancements to processes and dig results feedback improved Axial Planar identification.